

LA-UR-21-23947

Approved for public release; distribution is unlimited.

Title: Opportunities for the capture and utilization of CO2 by biological

platforms

Author(s): Gonzalez Esquer, Cesar Raul

Intended for: Presentation to college students

Issued: 2021-04-22

Opportunities for the capture and utilization of CO₂ by biological platforms

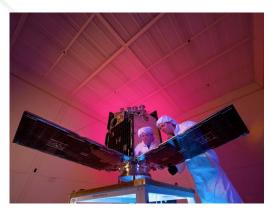
Raul Gonzalez

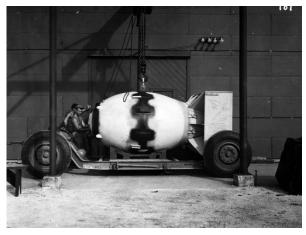
Scientist 2

Scientific Background

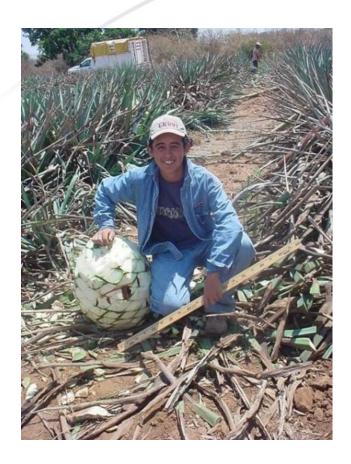
- "Licenciatura" Chemist-Pharmacobiologist (UAG)
 - Antioxidant response in banana trees after mechanical wounding
- "Scholar" (Jose Cuervo Agriculture Division)
 - Biochemical signatures leading to high biomass in *Agave tequilana*.
- PhD in Plant Biology (Arizona State University)
 - Developing cyanobacteria as platforms for biofuel production (metabolic engineering and heat shock tolerance)
- 1st Postdoc (Michigan State University)
 - Engineering of the CO₂-concentration mechanism of cyanobacteria (synthetic biology and physiology)
- 2nd Postdoc (LANL)
 - Engineering of the CO₂-concentration mechanism of microalgae; development of algae transgenics for biofuel production

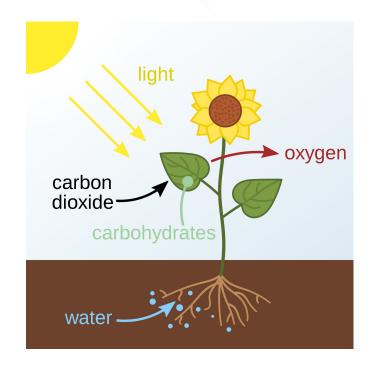
Los Alamos National Laboratory



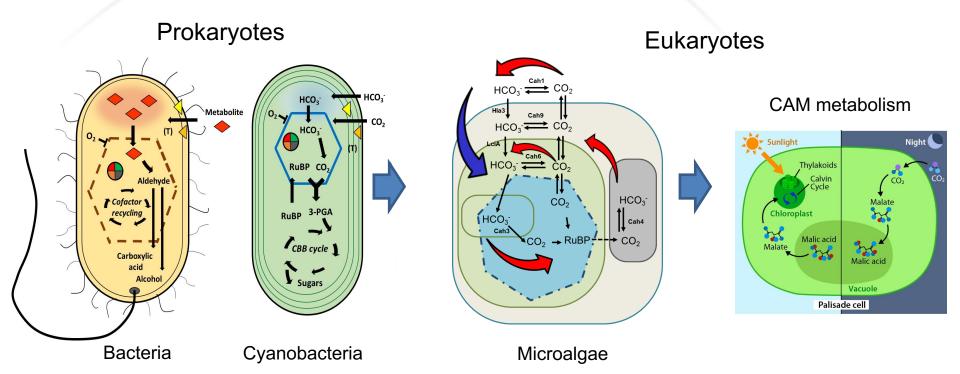

Mission:

Solve national security challenges through scientific excellence.

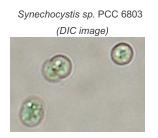


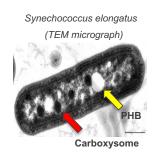


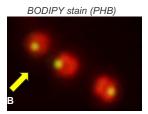
Photosynthesis


Carbon dioxide+ water + sunlight⇒ oxygen + sugars

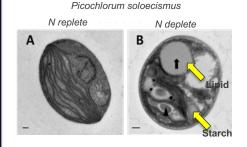
SynBio as the bridge between interdisciplinary research

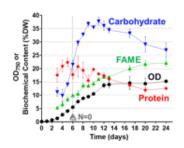




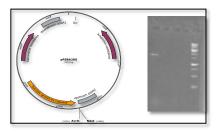

Photosynthetic production of renewable chemicals

 Cyanobacteria are fast growers, genetically tractable and possess highly efficient CO₂-concentrating mechanisms (bicarbonate pumps and carboxysomes).

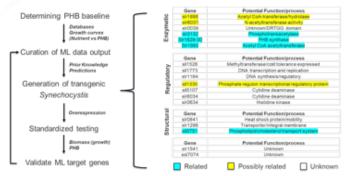

 Cyanobacterial metabolism is a vast resource for bioactive molecules and renewable polymers, many yet to be characterized.

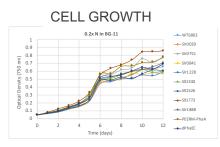


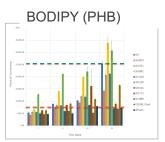

- Polyphosphates
- Microcystins
- Phyto-hormones
- Siderophores
- Pigments
- ?'


 Microalgae utilize their fixed CO₂ towards the accumulation of C-rich storage molecules (during nutrient stress).

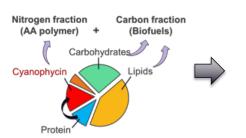
 Microalgae can be grown outdoors efficiently, and can be genetically-engineered.

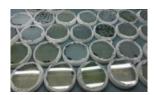





BioManiac: Biomanufacturing with Intelligent Adaptive control

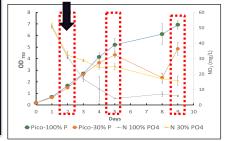
ML-based method for the discovery of genes that are non-intuitively related to PHB (bioplastic) synthesis in cyanobacterial has a large through the state of the cyanobacterial and the cyanob

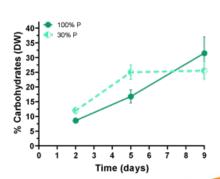

√ Various transgenics show improved cell growth or altered PHB



Engineering green factories for the production of renewable chemicals

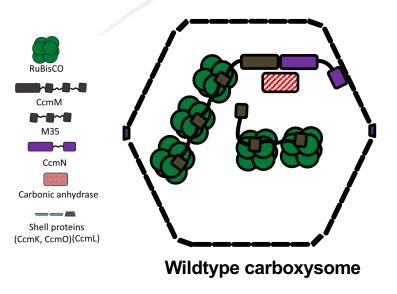
 Add value to microalgal biomass, through the coproduction of C-rich storage molecules and the N-based cyanobacterial polymer, cyanophycin (replacement for absorbents, paints, adhesives, detergents)

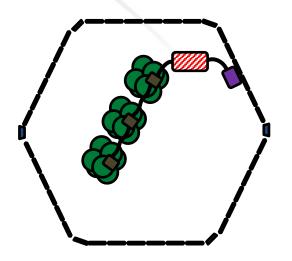




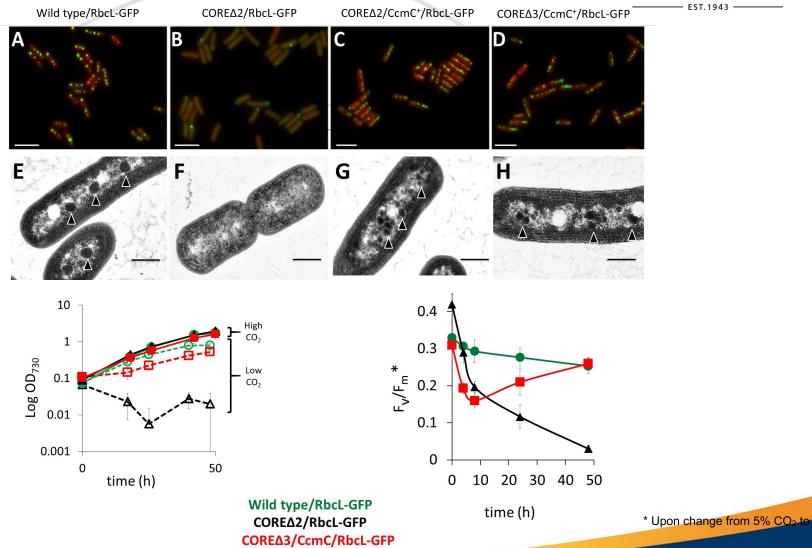
 Transgenic algae expressing cyanobacterial gene (CphA)

✓ Phosphate limitation induces C storage



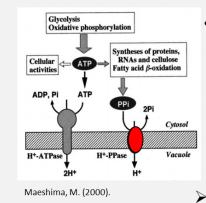


Comparison of wildtype and mutant carboxysomes

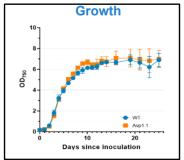


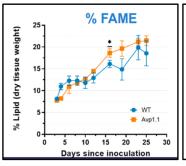
Streamlined carboxysome

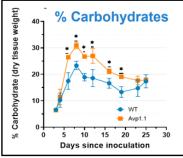
- Flexibility of subunits under environmental conditions
- Several subunits required for transfer to other organisms
- Complex assembly and regulation in other organisms
- Fixed stoichiometry of the composing domains
- Increased portability (fewer number of proteins required)
- Simplified assembly and regulation (one core assembly protein) in other organisms
- Potential for improvement



Increasing Carbon Storage in Transgenic Algae

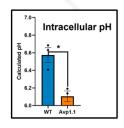


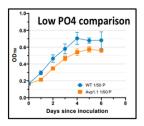

Overexpression of a H⁺-pumping pyrophosphatase (AVP1)

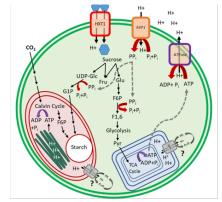


Avp1 in plants:

- PP_i homeostasis (metabolic regulation)
- Creates H⁺ gradient for ATP synthesis
- Phloem loading/sucrose transport
- Avp1 overexpression:
 - Increases biomass, salt tolerance, and drought tolerance in crops like cotton, tomato, rice, and wheat.
- Avp1 overexpression effect unknown in algae
- AVP1 overexpression increases carbohydrates under N deplete conditions

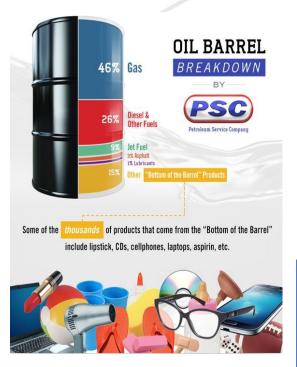





K Wright, R. Gonzalez, T. Dale

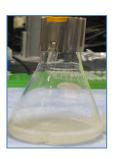
 AVP1 overexpression decreases intracellular pH and diminishes growth on low PO₄ conditions

 AVP1 overexpression improves biochemical composition (increased C storage) of algal biomass, likely due to PP_i synthesis (provoking an intracellular P-limiting condition).



1

Biology leveraged as an alternative to petroleum



PLANTS

Plants have been grown for ages, however, engineering can be challenging. Also, they can compete for land with food production.

ALGAE

Algae are fast growers and capable of fixing their own carbon, however, we still have yet to develop methods to efficiently utilize all biomass fractions.

BACTERIA

Bacteria are fast growers and easy to engineer, however, they require exogenous carbon supply (i.e. sugars, generally obtained from plants).

Source: Petroleum Service Company. http://www.industrialoutpost.com/oilbarrel-42-gallon-breakdown/

GRACIAS

crge@lanl.gov

